Preview

Инновационная медицина Кубани

Расширенный поиск

МикроРНК как терапевтические мишени при нейробластомах

https://doi.org/10.35401/2500-0268-2019-16-4-66-71

Аннотация

Нейробластома – наиболее распространенная внекраниальная солидная опухоль, которая является одной из основных причин смерти от рака у детей в возрасте от 1 до 5 лет. Причем на нее приходится около 15% всей смертности от онкологии в детском возрасте. Новообразование имеет характерные особенности, такие как ранний возраст дебюта заболевания, высокая частота метастазирования при диагностике у пациентов старше 1 года и тенденция к спонтанной регрессии у детей раннего возраста. Хотя и было ранее определено несколько прогностических факторов (возраст, стадия, гистология, наследственность), идентификация неинвазивных биомаркеров для наблюдения за болезнью и мониторинг терапии действительно все еще остаются клинической необходимостью. В обзоре описаны последние данные о микроРНК в нейробластоме с акцентом на те, которые участвуют в прогрессировании опухоли, метастазировании и имеют лекарственную устойчивость. Кроме того, обсуждено их потенциальное применение в терапии этой опухоли.

Об авторах

О. А. Бейлерли
Башкирский государственный медицинский университет Министерства здравоохранения РФ
Россия

Бейлерли Озал Арзуманоглы – аспирант кафедры урологии с курсом ИДПО

Республика Башкортостан, Уфа, ул. Ленина, 3 



И. Ф. Гареев
Башкирский государственный медицинский университет Министерства здравоохранения РФ
Россия

Гареев Ильгиз Фанилевич – аспирант кафедры нейрохирургии и медицинской реабилитации с курсом ИДПО

Республика Башкортостан, Уфа, ул. Ленина, 3 



Список литературы

1. Gatta G, Ferrari A, Stiller CA, et al. Embryonal cancers in Europe. Eur J Cancer. 2012;48:1425-33. https://doi.org/10.1016/j.ejca.2011.12.027.

2. Zage PE, Kletzel M, Murray K, et al. Outcomes of the POG 9340/9341/9342 trials for children with high-risk neuroblastoma: A report from the Children’s Oncology Group. Pediatr Blood Cancer. 2008;51:747-53.

3. Seeger RC, Reynolds CP. Treatment of high-risk solid tumors of childhood with intensive therapy and autologous bone marrow transplantation. PediatrClin North Am. 1991;38:393-424.

4. Park JR, Eggert A, Caron H. Neuroblastoma: Biology, prognosis, and treatment. PediatrClin North Am. 2008;55:97-120. https://doi.org/10.1016/j.pcl.2007.10.014.

5. Pearson AD, Pinkerton CR, Lewis IJ, et al. High-dose rapid and standard induction chemotherapy for patients aged over 1 year with stage 4 neuroblastoma: A randomised trial. Lancet Oncol. 2008;9:247-56. https://doi.org/10.1016/S1470-2045(08)70069-X.

6. Ho R, Eggert A, Hishiki T, Minturn JE, Ikegaki N, Foster P, et al. Resistance to chemotherapy mediated by TrkB in neuroblastomas. Cancer Res. 2002;62:6462-6.

7. Jaboin J, Kim CJ, Kaplan DR, Thiele CJ. Brain-derived neurotrophic factor activation of TrkB protects neuroblastoma cells from chemotherapy-induced apoptosis via phosphatidylinositol 3’-kinase pathway. Cancer Res. 2002;62:6756-63.

8. Scala S, Wosikowski K, Giannakakou P, et al. Brainderived neurotrophic factor protects neuroblastoma cells from vinblastine toxicity. Cancer Res. 1996;56:3737-42.

9. Keshelava N, Zuo JJ, Chen P, et al. Loss of p53 function confers high-level multidrug resistance in neuroblastoma cell lines. Cancer Res. 2001;61:6185-93.

10. Castle VP, Heidelberger KP, Bromberg J, et al. Expression of the apoptosis-suppressing protein bcl-2, in neuroblastoma is associated with unfavorable histology and N-mycamplification. Am J Pathol. 1993;143:1543-50.

11. Hopkins-Donaldson S, Bodmer JL, Bourloud KB, et al. Loss of caspase 8 expression in highly malignant human neuroblastoma cells correlates with resistance to tumor necrosis factor-related apoptosis-inducing ligand induced apoptosis. Cancer Res. 2000;60:4315-9.

12. Goldstein LJ, Fojo AT, Ueda K, et al. Expression of the multidrug resistance, MDR1, gene in neuroblastomas. J ClinOncol. 1990;8:128-36. https://doi.org/10.1200/JCO.1990.8.1.128.

13. Norris MD, Bordow SB, Marshall GM, et al. Expression of the gene for multidrug-resistance-associated protein and outcome in patients with neuroblastoma. N Engl J Med. 1996;334:231-8. https://doi.org/10.1056/NEJM199601253340405.

14. Yang Q, Kiernan CM, Tian Y, et al. Methylation of CASP8, DCR2, and HIN-1 in neuroblastoma is associated with poor outcome. Clin Cancer Res. 2007;13:3191-7. https://doi.org/10.1158/1078-0432.CCR-06-2846.

15. Buckley PG, Das S, Bryan K, et al. Genome-wide DNA methylation analysis of neuroblastic tumors reveals clinically relevant epigenetic events and largescaleepigenomic alterations localized to telomeric regions. Int J Cancer. 2011;128:2296-305. https://doi.org/10.1002/ijc.25584.

16. Weber M, Davies JJ, Wittig D, et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet. 2005;37:853-62. https://doi.org/10.1038/ng1598.

17. Grau E, Martinez F, Orellana C, et al. Epigenetic alterations in disseminated neuroblastomatumour cells: Influence of TMS1 gene hypermethylation in relapse risk in NB patients. J Cancer Res ClinOncol. 2010;136:1415-21. https://doi.org/10.1007/s00432-010-0796-9.

18. Charlet J, Schnekenburger M, Brown KW, Diederich M. DNA demethylation increases sensitivity of neuroblastoma cells to chemotherapeutic drugs. BiochemPharmacol. 2012;83:858-65. https://doi.org/10.1016/j.bcp.2012.01.009.

19. Stiborova M, Poljakova J, Eckschlager T, et al. DNA and histone deacetylases as targets for neuroblastoma treatment. InterdiscipToxicol. 2010;3:47-52. https://doi.org/10.2478/v10102-010-0010-6

20. Soriano A, Jubierre L, Almazan-Moga A, et al. MicroRNAs as pharmacological targets in cancer. Pharmacol Res. 2013;75:3- 14. https://doi.org/10.1016/j.phrs.2013.03.006.

21. Lin RJ, Lin YC, Chen J, et al. microRNA signature and expression of Dicer and Drosha can predict prognosis and delineate risk groups in neuroblastoma. Cancer Res. 2010;70:7841-50. https://doi.org/10.1158/0008-5472.

22. Welch C, Chen Y, Stallings RL. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene. 2007;26:5017-22. https://doi.org/10.1038/sj.onc.1210293.

23. Raver-Shapira N, Marciano E, Meiri E, et al. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell. 2007;26:731-43. https://doi.org/10.1016/j.molcel.2007.05.017.

24. Tivnan A, Orr WS, Gubala V, et al. Inhibition of neuroblastoma tumor growth by targeted delivery of microRNA34a using anti-disialoganglioside GD2 coated nanoparticles. PLoS One. 2012;7:e38129. https://doi.org/10.1371/journal.pone.0038129.

25. Bray I, Tivnan A, Bryan K, et al. MicroRNA-542-5p as a novel tumor suppressor in neuroblastoma. Cancer Lett. 2011;303:56-64. https://doi.org/10.1016/j.canlet.2011.01.016.

26. Althoff K, Lindner S, Odersky A, et al. miR-542- 3p exerts tumor suppressive functions in neuroblastoma by downregulatingSurvivin. Int J Cancer. 2015;136:1308-20. https:// doi.org/10.1002/ijc.29091.

27. Buechner J, Tomte E, Haug BH, et al. Tumour-suppressor microRNAs let-7 and mir-101 target the proto-oncogene MYCN and inhibit cell proliferation in MYCN-amplifiedneuroblastoma. Br J Cancer. 2011;105:296-303. https://doi.org/10.1038/bjc.2011.220.

28. Molenaar JJ, Domingo-Fernandez R, Ebus ME, et al. LIN28B induces neuroblastoma and enhances MYCN levels via let-7 suppression. Nat Genet. 2012;44:1199-206. https://doi.org/10.1038/ng.2436.

29. Lee JJ, Drakaki A, Iliopoulos D, Struhl K. MiR-27b targets PPAR-gamma to inhibit growth, tumor progression and the inflammatory response in neuroblastoma cells. Oncogene. 2012;31:3818-25. https://doi.org/10.1038/onc.2011.543.

30. Feng X, Wang Z, Fillmore R, et al. MiR 200, a new star miRNA in human cancer. Cancer Lett. 2014;344:166-73. https:// doi.org/10.1016/j.canlet.2013.

31. Gao SL, Wang LZ, Liu HY, et al. miR-200a inhibits tumor proliferation by targeting AP-2gamma in neuroblastoma cells. Asian Pac J Cancer Prev. 2014;15:4671-6. https://doi.org/10.7314/apjcp.2014.15.11.4671.

32. Zhang H, Qi M, Li S, et al. microRNA-9 targets matrix metalloproteinase 14 to inhibit invasion, metastasis, and angiogenesis of neuroblastoma cells. Mol Cancer Ther. 2012;11:1454-66. https:// doi.org/10.1158/1535-7163.MCT-12-0001.

33. Zhang H, Pu J, Qi T, et al. MicroRNA-145 inhibits the growth, invasion, metastasis and angiogenesis of neuroblastoma cells through targeting hypoxia-inducible factor 2 alpha. Oncogene. 2014;33:387-97. https://doi.org/10.1038/onc.2012.574.

34. Qiao J, Lee S, Paul P, et al. miR-335 and miR-363 regulation of neuroblastomatumorigenesis and metastasis. Surgery. 2013;154:226-33. https://doi.org/10.1016/j.surg.2013.04.005.

35. Lodrini M, Oehme I, Schroeder C, et al. MYCN and HDAC2 cooperate to repress miR-183 signaling in neuroblastoma. Nucleic Acids Res. 2013;41:6018-33. https://doi.org/10.1093/nar/gkt346.

36. Chakrabarti M, Banik NL, Ray SK. miR-138 overexpression is more powerful than hTERT knockdown to potentiate apigenin for apoptosis in neuroblastoma in vitro and in vivo. Exp Cell Res. 2013;319:1575-85. https://doi.org/10.1016/j.yexcr.2013.02.025.

37. Nadir Y, Brenner B. Heparanase multiple effects in cancer. Thromb Res. 2014;133Suppl 2:S90-4. https://doi.org/10.1016/ S0049-3848(14)50015-1.

38. Qu H, Zheng L, Pu J, et al. miRNA-558 promotes tumorigenesis and aggressiveness of neuroblastoma cells through activating the transcription of heparanase. Hum Mol Genet. 2015;24:2539-51. https://doi.org/10.1093/hmg/ddv018.

39. Tweddle DA, Pearson AD, Haber M, et al. The p53 pathway and its inactivation in neuroblastoma. Cancer Lett. 2003;197:93-8. https://doi.org/10.1016/S0304-3835(03)00088-0.

40. Swarbrick A, Woods SL, Shaw A, et al. miR-380-5p represses p53 to control cellular survival and is associated with poor outcome in MYCN-amplifiedneuroblastoma. NatMed. 2010;16:1134-40. https://doi.org/10.1038/nm.2227.


Рецензия

Для цитирования:


Бейлерли О.А., Гареев И.Ф. МикроРНК как терапевтические мишени при нейробластомах. Инновационная медицина Кубани. 2019;(4):66-71. https://doi.org/10.35401/2500-0268-2019-16-4-66-71

For citation:


Beylerli O.A., Gareev I.F. MicroRNA as therapeutic targets for neuroblastomas. Innovative Medicine of Kuban. 2019;(4):66-71. (In Russ.) https://doi.org/10.35401/2500-0268-2019-16-4-66-71

Просмотров: 1746


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution-NonCommercial 4.0 International.


ISSN 2541-9897 (Online)